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e How much do Newton and Einstein disagree about the orbit of Mercury?

e How do theory and experiment decide between them?
e Why Mercury?
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Advance of the
Perihelion of Mercury

This discovery was, I believe, by far the strongest emotional experience in

Einstein’s scientific life, perhaps in all his life. Nature had spoken to him.

He had to be right. “For a few days, I was beside myself with joyous }
excitement.” Later, he told Fokker that his discovery had given him !
palpitations of the heart. What he told de Haas is even more profoundly

significant: when he saw that his calculations agreed with the unexplained

astronomical observations, he had the feeling that something actually

snapped in him.

—Abraham Pais

1 Joyous Excitement

What discovery sent Einstein into “joyous excitement” in November of
19147 It was the calculation showing that his brand new (actually not quite
completed) theory of general relativity gave the correct value for one
detail of the orbit of the planet Mercury that had previously been
unexplained.

Mercury circulates around Sun in a not quite circular osbit: The planet
oscillates in and out radially while it circles tangentially. The result is an
elliptic orbit. Newton tells us that if we consider only the interaction
between planet and Sun, then the time for one circular orbit is exactly the
same as one in-and-out radial oscillation. Therefore the orbital point clos-
est to Sun, the so-called perihelion, stays in the same place; the elliptical
orbit does not shift around with each revolution—according to Newton. In
this project you will begin by verifying this nonrelativistic result. Why
bother calculating something that does not change? Because observation
shows that Mercury’s orbit does, in fact, change. The innermost point, the
perihelion, moves around the Sun a little; it advances with each orbit (Fig-
ure 1). The long (major) axis of the ellipse rotates at the tiny rate of 574
seconds of arc (0.159 degree) per century. (One degree equals 3600 seconds
of arc.) Newtonian mechanics accounts for 531 seconds of this advance by
computing the perturbing influence of the other planets. But a stubborn 43
seconds of arc (0.0119 degree) per century (called a residual) remains after
all these effects are accounted for. This discrepancy (though not its modern
value) was computed from observations by LeVerrier as early as 1859.

Section 1 Joyous Excitement " CA1



Simon Newcomb

his collaborator, George W. Hill. By the age of five Newcomb
was spending several hours a day making calculations and
before the age of seven was extracting cube roots by hand.
He had little formal education but avidly explored many
technical fields in the libraries of Washington, D. C. He
discovered the American Ephemeris and Nautical Almanac,
of which he said, “Its preparation seemed to me to embody
the highest intellectual power to which man had ever
attained.”

Newcomb became a “computer” (someone who computes)
in the American Nautical Almanac Office and, by stages, rose
to become its head. The greater part of the rest of his life
was spent calculating the motions of bodies in the solar
system from the best existing data. Newcomb collaborated
with Q. M. W. Downing to inaugurate a worldwide system
of astronomical constants, which was adopted by many
countries in 1896 and officially by all countries in 1950.

Simon Newcomb

Born March 12, 1835, Wallace, Nova Scotia
Died July 11, 1909, Washington, D.C.
(Photo courtesy of Yerkes Observatory)

From 1901 until 1959 and even later, the tables of locations The advance of the perihelion of Mercury computed by
of the planets (so-called ephmerides) used by most Einstein in 1914 would have been compared to entries in the
astronomers were those compiled by Simon Newcomb and tables of Simon Newcomb.

The advance of the perihelion of Mercury is sometimes called the
precession of the perihelion._

Newtonian mechanics says that there should be no residual advance of the
perihelion of Mercury’s orbit and so cannot account for the 43 seconds of

arc per century which, though tiny, is nevertheless too large to be ignored
or blamed on observational error. But Einstein's general relativity hit it on
the button. Result: joyous excitement!

In this project we review Newton's incorrect prediction and then carry out
a general-relativistic approximate calculation of the advance of the perihe-
lion of Mercury adapted from that of Robert M. Wald (General

Relativity, University of Chicago Press, 1984, pages 142-143). This approxi-
mation déscribes the angular motion of the planet as if it were in a nearly
circular otbit. From this assumption we calculate the time for one orbit.
The approximation also describes the small inward and outward radial
motion of the planet as if it were a harmonic oscillator moving back and
forth radially about the minimum in a potential well (Figure 2). We calcu-
late the time for one round-trip radial oscillation. These two times are
equal, according to Newton, if one considers only the planet-Sun interac-
tion. In that case the planet goes around once in the same time that it
oscillates radially inward and back out again. The result is an elliptical
orbit that closes on itself, so the planet repeats its elliptic path forever. In
contrast, these two times—the angular and the radial—are not quite equal
according to the Einstein approximation. The radial oscillation takes place
more slowly. From the difference we reckon the approximate rate of
advance of Mercury’s perihelion around Sun.

™
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Figure 1 Exaggerated view of the change in
orientation of Mercury’s orbit during one century.

2 Linear Harmonic Oscillator

Why should the satellite oscillate in and out radially? Look at the effective
potential for Newtonian motion, the heavy line in Figure 2. This heayy
line has a minimum, the location at which a particle can rest and ride

- around at constant 7, executing a circular orbit. But it can also oscillate
cadially in and out, as shown by the two-headed arrow.

How long will it take for one in-and-out oscillation? That depends on the
shape of the effective potential curve near the minimum shown in Figure
2. If the amplitude of the oscillation is small, then the impbrtant part of the
curve is very close to this minimum, and we can use a well-known mathe-
matical theorem: If a continuous, smooth curve has a minimum, then near
that minimum the curve can be approximated by a parabola with its ver-
tex at the minimum point. Such a parabola is shown superimposed on the
effective potential curve of Figure 2. From the diagram it is apparent that
the parabola is a good approximation of the potential near that minimum.
In fact Mercury’s orbit swings from a minimum radius (the perihelion) of
46.04 million kilometers to a maximum radius (the so-called aphelion) of
69.86 million kilometers.

From introductory physics we know how a particle moves in a parabolic
potential. The motion is called harmonic oscillation and follows a for-
mula of the kind

x = A sinwt (1]

Section 2 Linear Harmonic Oscillator
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Figure 2 Computer plot: The Newtonian effective potential (thick curve), copied from
Figure 5, page 4-12, on which is superimposed the parabolic potential of the simple
harmonic oscillator (thin curve). The two curves conform to one another only near the
minimum of the effective potential. We use a similar set of curves to approximate the
radial oscillation of Mercury in its orbit as an harmonic oscillation of small amplitude.

%

Here A is the amplitude of the oscillation and ® (Greek lower-case omega)
tells us how rapidly the oscillation occurs. The potential energy per unit
mass V/m of a particle oscillating in a parabolic potential is given by the
formula

V/m = %mzf 2]

From equation [2] we can find an expression for ® by taking the second
de:rivatilve of both sides with respect to the displacement x:
2
d (V/m) = w2 3]
2
dx

In general, if we have the expression for the potential, we can find the rate
® of harmonic oscillation around a minimum by taking the second deriva-
tive of the curve and evaluating it at that minimum where

d(V/m)/dx = 0.

3 Radial Harmonic Oscillation of Mercury: Newton

The trouble with the in-and-out radial oscillation of Mercury is that it does
not take place around x = 0 but around the average radius 7, of its orbit.
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What is the value of 1o? Itis the radius for which the effective potential has

a minimum. For Newtonian orbits the radial motion is given by equations
[27], page 4-11, and [29], page 4-12:

2 2
1(45) E | M Wm| E V) [4. Newton]
2\ dt m r 2r2 m m

From this equation we define the effective potential (equation [28] on page
4-12):
o) M, @)’

s [5. Newton]
m T 2 r

QUERY 1 Finding the potential minimum. Take the derivative with respect to r of
the potential per unit mass, V/m given in equation [5]. Set this first deriva-
tive aside for use in Query 2. As a separate calculation, equate this
derivative to zero in order to determine the radius ro at the effective
potential minimum. Use the result to write down an expression for the
unknown quantity (L/m)? in terms of the known quantities M and r,,.

QUERY 2 Oscillation rate w, for radial motion. We want to use equation [3] to find
the rate of radial oscillation. Accordingly, continue by taking a second
derivative of V/m in equation [5] with respect to r. Set r = ro in the result-
ing expression and substitute your value for (L/m)? from Query 1. Use
equation [3] to find an expression for the rate at which Mercury oscillates
in and out radially—according to Newton!

4 Angular Velocity of Mercury in Its Orbit: Newton

We want to compare the rate o, of in-and-out radial motion of Mercury
with its rate @y, of round-and-round tangential motion. Use the Newtonian
definition of angular momentum, with increment df of Newtonian univer-
sal time, similar to equation [2], page 4-3:

- 2db D
L/m = r 2 =T % [6. Newton]

We want to find the value for the angular velocity Wy = d/dt of Mercury
along its almost circular orbit.

QUERY 3 ~  Angular velocity of Mercury in orbit. Into equation [€] substitute your
value for L/m from Query 1 and set r = r,,. Find an expression for dd/dt in
terms of M and r,,.

Section 4 Angular Velocity of Mercury in Its Orbit: Newton
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QUERY 4 Comparing radial oscillation rate with orbital angular velocity. Compare
your value of angular velocity @, from Query 3 with your value for radial
oscillation rate ®, from Query 2. State your conclusion about the advance
of the perihelion of Mercury's orbit around Sun (when only the Sun-
Mercury interaction is considered), according to Newton.

5 Effective Potential: Einstein

Now we repeat the analysis for the general relativistic case, using the
Newtonian analysis as our model. Equation [30], page 4-15 gives a mea-
sure of the radial motion of the orbiting planet. Multiply through by 1/2
to obtain an equation similar to equation [4] above for the Newtonian case:

(&) - 4G 402 2] -0 8w

Equations [4] and [7] are of similar form, and we use this similarity to
make a harmonic analysis of the radial motion of Mercury in orbit in gen-
eral relativity similar to the Newtonian analysis of Sections 3 and 4. Begin
by assigning the name effective potential and the symbol U/m to the term
subtracted from the squared energy in [7], as indicated on the right end of
the equation. -

Before proceeding further, note first that the time in equation [7] is the
proper time 1, the wristwatch time of the satellite, not Newton’s universal
time ¢. This different time standard is not necessarily fatal, since in Newto-
nian mechanics there is only one universal time, and we have not yet had
to decide which relativistic time should replace it. You will show that for
Mercury the choice of which time to use (wristwatch time, bookkeeper far-
away time, or even shell time at the radius of the orbit) makes a negligible
difference in our predictions about the rate of advance of the perihelion.

stands in the place of the Newtonian expression (E/m) in equation [4]. Do
we dare replace an energy with a squared energy? Both represent a con-
stant of the motion and, strange as it may seem, the difference does not
affect ouir analysis. Evidence that we are on the right track follows from
multiplying out the second term of the middle equality in equation [7]. We
have assigned the symbol U/m to this second term.

s - -2

r

Second, rEt:e that the relativistic expression (1/ 2)(E/m)? in equation [7]

2 2 [8]
(L/m)° M(L/m)

21»'2 r3

=

1
5 e
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On the right side of the second line are the two effective potential terms
that made up the Newtonian expression [5]. In addition, the first term
(1/2) assures that far from the center of attraction the radial speed in [7]
will have the correct value. For example, let the total energy equal the rest
energy (E/m =1). Then for large 7, the radial speed dr/dz (equation [7]) goes
to zero, as it must in this case. The potential U/m is plotted in Figure 3.

The final term on the right of the second line of [8] describes an attractive
potential arising from general relativity. This causes the slight deviation of
the orbit of Mercury from that predicted by Newton. Because of the 3 in
the denominator, near a black hole this negative term overwhelms all oth-
ers at small radii, leading to the downward plunge in the effective
potential at the left side of Figure 3.

In summary, the forms of equations [7] and [8] allow us to use the tools of
Newtonian mechanics to analyze the radial component of the satellite’s
motion predicted by general relativity, provided that we are satisfied with
the wristwatch time of the satellite and with an “energy term” equal to
(1/2)(E/m)?. Of course, we are trying to solve a relativistic problem. Never-
theless, because of its form we can use the Newtonian manipulation to
carry out a general relativistic calculation.
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Figure 3 Computer plot: Approximation of the general-relativistic effective
potential UIm (heavy curve) at the minimum with a parabola (light curve) in
order to analyze the radial excursion (double-headed arrow) as simple
harmonic motion. The heavy effective potential curve is for a black hole, not
for Sun, whose effective potential would be indistinguishable from the
Newtonian function on the scale of this diagram.

Section 5 Effective Potential: Einstein
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6 Radial Harmonic Oscillation of Mercury: Einstein

Now analyze the radial oscillation of Mercury according to Einstein.

QUERY 5

QUERY 6

QUERY 7

Finding the potential minimum. Take the derivative of the effective
potential [8] with respect to r. Set this first derivative aside for use in
Query 6. As a separate calculation, equate this derivative to zero, set
r= ro , and solve the resulting equation for the unknown quantity
(L/m)? in terms of the known quantities M and r,,.

Radial oscillation rate. We want to use equation [3] to find the rate of
oscillation in the radial direction. Accordingly, continue to the second

derivative of U/m from equatlon [8]. Set r = ry in the result and substi-
tute the expression for (L/m)? from Query 5 to obtain

d*(U/m) 2 M(r,—6M)
=l eme (o)
dr ro(ro—3M)

r=ry

Newtonian limit of radial oscillation. The radius of Mercury’s orbit
around Sun has the value r, = 5.80 x 10'” meters. Compare this radius
with the value M for the mass of Sun in geometric units. If one of these
can be neglected in equation [9] compared with the other, demonstrate
that the resulting value of , is the same as your Newtonian expression
derived in Query 2.

7 Angular Velocity in Orbit: Einstein

We want to compare the rate of in-and-out radial oscillation of Mercury
with the angular rate at which Mercury moves tangentially in its orbit.
The rate of change of azimuth ¢ springs from the definition of angular
momentum, equation [2], page 4-3:

L _ 2do

m dt

[10]

Note that the time here, to0o, is the wristwatch (proper) time 7 of the

satellite. |

QUERY 8

Angular velocity. Square both sides of equation [10] and use your result
from Query 5 to eliminate (L/m)? from the resulting equation. Show that
the result can be written

2. d¢)2 i M
o=l = [11]
; (d‘ ra(ry—3M)

According to the relativistic prediction, does the round-and-round tangen-
tial motion of Mercury take place in step with the in-and-out radial
oscillation, as it does in the Newtonian analysis?

c8
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QUERY 9

Newtonian limit of angular velocity. Make the same kind of approximation
as in Query 7 and demonstrate that the resulting value of ®, is the same as

your Newtonian expression derived in Query 3.

8 Predicting Advance of the Perihelion

The advance of the perihelion of Mercury springs from the difference
between the frequency at which the planet sweeps around in its orbit and
the frequency at which it oscillates in and out radially. In the Newtonian
analysis these two frequencies are equal if one considers only the interac-
tion between planet and Sun. But Einstein’s theory shows that these two
frequencies are not quite equal, so Mercury reaches its maximum (or mini-
mum) radius at a slightly different angular position in each orbit. This
results in the advance of the perihelion. The rate of advance is the differ-
ence between the orbital angular frequency w, and the radial angular
frequency o, .

struct and simplify an expression for the difference of squares
03¢2 - @2 in terms of M, ror and @y plus numerical constants.

QUERY 10 Difference in squared oscillation rates. From equations [11] and [9] con-

of Query 10 in the following form:

2 2
Op— 0 = (m¢ + mr)(% -®)= 2m¢(({)¢ -o,)

written

m¢"‘mr: T{)‘(O¢

calculate the rate of advance of the perihelion of Mercury.

QUERY 11 Difference in oscillation rates. The two angular rates ®y and @ are almost
identical in value, even in the Einstein analysis. Therefore write the result

[12]

Use outcomes of earlier queries to show that this approximation can be

[13]

Equation [13] gives us the difference in angular rate between the tangen-
tial motion and the radial oscillation. From this rate difference we can

All of the w-expressions are of the form d(angle)/dz or

d(phase angle) /dt. Since dt is in the denominator everywhere, it can be
canceled out and the angle increments added to give angles. The resulting
adaptation of equation [13] has the following form:

Section 8 Predicting Advance of the Perihelion

- C9



predicted

angle of

advance

total angle total phase angle
= coveredin |- covered 1n
orbital motion radial motion
[14]
total angle
= — covered in

orbital motion

Moreover, we can use any measure of angle we wish—degrees or radians
or seconds of arc—as long as we are consistent. Numerical prediction
based on this equation must be compared with results of observation.

9 Comparison with Observation

QUERY 12

QUERY 13

QUERY 14

QUERY 15

QUERY 16

|

Mercury’s orbital period. The period of Mercury’s orbit is 7.602 x 10° sec-
onds and that of Earth is 3.157 x 107 seconds. What is the value of
Mercury's period in Earth-years?

Mercury’s revolution in one century. How many revolutions around Sun
does Mercury make in one century (100 Earth-years)? How many degrees
of angle are traced out by Mercury in one century?

Correction factor. The mass M of Sun is 1.477 x 10> meters and the radius

ro of Mercury’s orbit is 5.80 x 10'% meters. Calculate the value of the cor-
rection factor 3M/r,, in equation [14].

Advance angle per century in degrees. Using equation [14], multiply your
answers from Queries 13 and 14 to obtain a prediction of the advance of
the perihelion of Mercury’s orbit per century in degrees.

Advance angle per century in seconds of arc. There are 60 minutes of arc
per degree and 60 seconds of arc per minute of arc. Multiply your result
from Query 15 by 60 x 60 = 3600 to obtain your prediction of the advance
of the perihelion of Mercury's orbit per century in seconds of arc.

A more cdreful analysis predicts a value of 42.98 seconds of arc (0.0119
degrees) per century (see Table 1). The observed rate of advance of the
perihelion is in perfect agreement with this value: 42.98 + 0.1 seconds of
arc per century. (See references.) How close was your prediction?

10 Advance of the Perihelia of the Inner Planets

Do the perihelia (plural of perihelion) of other planets in the solar system
also advance as described by general relativity? Yes, but these planets are
farther from Sun, so the predicted advance is less than that of Mercury. In
this section we compare our estimated advance of the parahelia of the
inner planets Mercury, Venus, Earth, and Mars with results of an accurate

calculation.

C-10
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The Jet Propulsion Laboratory (JPL) in Pasadena, California, supports an
active effort to improve our knowledge of the positions and velocities of
the major bodies in the solar system. For the major planets and the moon,
JPL maintains a database and set of computer programs known as the
Solar System Data Processing System (SSDPS). The input database con-
tains the observational data measurements for current locations of the
planets. Working together, more than 100 interrelated computer programs
use these data and the relativistic laws of motion to compute locations of
planets at times in the past and future. The equations of motion take into
account not only the gravitational interaction between each planet and
Sun but also interactions among all planets, Earth’s moon, and 300 of the
most massive asteroids, as well as interactions between Earth and Moon
due to nonsphericity and tidal effects.

To help us with our project on perihelion advance, Myles Standish, Princi-
pal Member of the Technical Staff at JPL, kindly used the numerical
integration program of the SSDPS to calculate orbits of the four inner plan-
ets over four centuries, from A.D. 1800 to A.D. 2200. In an overnight run
he carried out this calculation twice, once with the full program including
relativistic effects and a second time “with relativity turned off.” Standish
“turned off relativity” by setting the speed of light to 10'° times its mea-
sured value, effectively making light speed infinite. (By combining
equation [5], page 2-14, with equation [10], page 2-19, we can show that
the Schwarzschild curvature factor in conventional units is written

(1 -2GMy, /rc?); the value of this expression approaches unity for a large
value of c.) For each of the two runs, the perihelia of the four inner planets
were computed for a series of points in time covering the four centuries.
The results from the nonrelativistic run were subtracted from those of the
relativistic run, revealing advances of the perihelia per century accounted
for only by general relativity. The second column of Table 1 shows the
results, together with the estimated computational error. Later columns
show additional data on these planets.

Table 1 Advance of the perihelia of the inner planets

Advance of perihelion in Radius of Period of
Planet seconds of arc per century orbit orbit
(JPL calculation) in AU* in years
Mercury 42,980 + 0.001 0.38710 0.24085
Venus 8.618 + 0.041 0.72333 0.61521
Earth 3.846 + 0.012 1.00000 1.00000
Mars 1.351 + 0.001 1.52368 1.88089

*Astronomical Unit (AU): average radius, Earth’s orbit; inside back cover.

Section 10 Advance of the Perihelia of the Inner Planets
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QUERY 17 Perihelia advance of the inner planets. Compare the JPL-computed
advances of the perihelia of Venus, Earth, and Mars with results of the
approximate formula developed in this project.

11 Checking the Standard of Time

QUERY 18 Difference between shell and wristwatch times. Use special relativity to
find the fractional difference between satellite wristwatch time T and the
time Ehell read on shell clocks at the same radius ry at which Mercury
moves in its orbit at the average velocity 4.8 x 10* meters/second. By what
fraction could a change of time from 1 to t;, change the total angle cov-
ered in the orbital motion of Mercury in one century (equation [14])?

Therefore by what fraction could it change the predicted angle of rota-
tion of the major axis?

QUERY 19 Difference between shell and far-away times. Find the fractional differ-
ence between shell time tg,) at radius r, and bookkeeper far-away time t
for rg, equal to the radius of the orbit of Mercury. By what fraction could a
change of time from t,¢ to t change the total angle covered in the
orbital motion of Mercury in one century (equation [14])? Therefore by
what fraction will it change the predicted angle of axis rotation?

QUERY 20 Does time standard matter? From your results of Queries 18 and 19, say
whether or not the choice of a time standard (planet proper time T, thay,
or far-away time t) would make a significant difference in the numerical
prediction of the advance of the perihelion of Mercury in one century.

Would your answer differ if the time were measured with clocks on
Earth’s surface?
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Calculation of the Advancement of Mercury’s Perihelion

From the General Relativity discussions: The Einstein Effective Potential is given by the expression:

I* i
W et
Ul M w inm
m 2 ¥ 2or° r

a. Determine the potential minimum and solve the resulting equation for L?/m” in terms of M and
Fp.

d> (U
b. Determine the radial oscillation rate a)f = —a' -2 oo |r =71,
i

m

_ ] ot L ,d¢

¢. Determine the azimuthal oscillation rate — — 7% —_
m dr

d. Determine an expression for a)j = cof in terms of M, ry, and o, plus numerical constants.

3M
€. Derive the expression 0, — @0, ¥ —® ¢ from the above considerations, from which we can
o
calculate the rate of advance of the perihelion of Mercury.
f.  Mercury’s orbital period is 7.602 x 10°seconds and Earth’s is
3.156 x 107 seconds. Determine Mercury’s period in earth years.

g How many revolutions around the sun does Mercury make in one century. Determine the
number of degrees of angle traced out by Mercury’s orbit in one century.

h. M is the sun’s mass = 1.477 x 10’meters and r, = 5.80 x 10'° meters is the radius of Mercury’s
orbit. Obtain a prediction of the advance of Mercury’s perihelion in degrees per century, and
then in seconds of arc per century. Do a % difference with the accepted value of 42.98 seconds of
arc per century.



