Physics 197: 
Precession of Mercury’s Perihelion
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San Diego Mesa College
Name:

Physics 197 Laboratory Experiment
Date: 

Title: Precession of Mercury’s Perihelion

Objective: 
To gain a greater understanding of the effects of relativity on our observations of the physical universe and to interact with the geometric system of units. Reference: http://en.wikipedia.org/wiki/Geometrized_unit_system
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Theory: 
Until Einstein formulated his theory of relativity, the precession of Mercury’s perihelion was unexplainable using the Newtonian model of the universe.


Mercury’s orbit around the Sun is not quite circular. As it circles, it oscillates in and out radially.  Newton predicts that the time for a complete orbit is the same as the time for a complete oscillation.  Therefore, the perihelion should always remain in the same place.


Observation reveals, however, that the point of perihelion is not constant. The major axis of the ellipse rotates at a tiny rate, about 574 arc-seconds, or 0.159 degrees per century. Using Newton’s theories, we can include all the other planets and calculate how they affect the orbit of Mercury. Still there remains a discrepancy of 43 arc-seconds, about 0.0119 degrees per century. To understand why Mercury should oscillate at all, we turn to the potential energy function that describes the Sun-Mercury interaction:
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The heavy line shows the potential energy curve of the system. Since Mercury is located near the minimum of the curve, it is in a stable equilibrium and the shape of the energy curve shows that the gravitational forces acting on the planet will be such as to return it to the minimum potential position. Thus, this is a conservative, restoring-force system and will display harmonic motion. We take advantage of the fact that for small excursions from the equilibrium position the potential energy curve can be approximated by a parabola, indicated by the lighter line in the diagram. 


From our study of mechanics, we know the behavior of a particle in a parabolic potential energy curve. This system displays harmonic motion and the position of the object about the equilibrium position may be written in the form:
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where A is the amplitude of motion and ( describes the frequency of oscillation.  Since 
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and we know that all simply oscillating systems have a general relationship between the acceleration and angular frequency given by:
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then with the potential energy per unit mass described by:
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we can find the following relationship:
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Mercury oscillates in and out around its mean orbit ro. The mean orbit occurs at a position where the forces are in equilibrium and this corresponds to a position where the potential energy function is at a minimum and the forces are zero. For a bound system, which is required for stable orbits to take place, energy is conserved and is less than zero.
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so if we use the geometric system of units, G=1 and then the effective potential:
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Query 1:
Take the derivative of the effective potential with respect to r and record the result. Then set the derivative equal to zero to find the effective orbital radius ro. Use the result to write an expression for the unknown quantity (L/m)2 in terms of M and ro.

Query 2:
In order to find the rate of radial oscillation, take the expression for U(r)/m and take the second derivative.  This will be equal to (2.  Set r=ro in this expression and substitute the value obtained for the quantity (L/m)2. This will be equal to the Newtonian oscillation rate, so label it (2N.


In order to understand why the perihelion moves we examine the angular oscillation rate and the angular rotation rate. Using the Newtonian definition of angular momentum
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Query 3:
Use the expression for the angular momentum and the expression for (L/m)2 and set r=ro. Use this to find an expression for (( in terms of M and ro.

Query 4: 
Compare the rate of angular velocity obtained in Query 3 to the radial oscillation rate from Query 2. According to this analysis, what can you state about the advance of the perihelion?


Well, all analysis aside, the perihelion does advance. We will build a model for the generally relativistic case and repeat our analysis of the model. Using the relativistic model for the motion of an orbiting planet, we arrive at the following expression:
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Since the equations for the effective potential from the Newtonian and the relativistic system have a similar form, we will use a similar analysis process. There is one point that must be addressed, however.  That point is the time unit used in the expressions. The time used in the Newtonian expression is the universal time t while the time used in Einstein’s expressions is local time on Mercury (. We will need to make a decision about how we want to treat the local time later in the process.


Another point that needs to be examined is the use of a squared energy term in the relativistic analysis. Both terms do represent a constant of motion, but we need to look a bit closer. Beginning with the term
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when we compare this to the Newtonian potential
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we find the relativistic potential contains the Newtonian potential along with a term
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which is an extra attractive effect due to the general relativistic equations, but this term obtains a near constant value about ro. In short, although there are a few differences, the basic form of the two potentials is quite similar and allows for a similar analysis technique.

[image: image19.wmf]So, now we will analyze the radial oscillation according to Einstein.

Query 5:
Take the derivative of the relativistic effective potential with respect to r Then, set this derivative equal to zero and set r=ro, as was done in Query 1. Then, solve this expression to find the quantity (L/m)2 in terms of M and ro.

Query 6:
Take the second derivative of the relativistic effective potential and set this expression equal to (2E, following the procedure of Query 2.

Query 7: 
The mean radius of Mercury’s orbit around the sun is ro=5.80•1010 meters. Compare this radius with the value for M, the mass of the sun, in geometric units. Can one be neglected with respect to the other? Show that when you make this substitution, your expression for (2E is the same as that obtained for (2N

Once again in order to understand why the perihelion moves we examine the angular oscillation rate and the angular rotation rate. Using the Newtonian definition of angular momentum
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once again, the time here is the time on Mercury, not Newton’s universal time.

Query 8: 
Use the expression for the angular momentum and the expression for (L/m)2 and set r=ro. Use this to find an expression for (( in terms of M and ro. Use this to create an expression for ((()2. Compare the rate of angular velocity obtained to the radial oscillation rate from Query 6. According to this analysis, what can you state about the advance of the perihelion?

Query 9: 
Following the approximation procedure of Query 7, show that substitution of the values for M and ro gives an expression that yields the same value as that obtained in Query 3.

Query 10:
From the expression for (2E from Query 6 and the expression for ((()2 from Query 8 construct an expression for the difference of squares ((()2 - (2E in terms of M. ro and (( as well as numerical constants.

Query 11:
These rates are still almost identical. Therefore, rewrite the result ((()2 - (2E =          (((-(E)(((-(E) ( 2(((((-(E) and use the result of the earlier queries to provide a simplified expression for ((-(E in terms of ((

All the expressions for ( are of the form d(angle)/d( and d(phase angle)/d(.  Since the denominators are the same, we can cancel the time dependence and add the angle increments. The equation that results shows the predicted angle of advance (PAA) and how it relates to the total angle covered in orbital motion (TOA) and the total phase angle covered in radial motion (TPA):

(PAA) = (TOA)-(TPA)

and this difference in angles can be written as the product of 

 (3M/ro)(TOA)

Query 12:
Mercury’s orbital period is 7.602•106 seconds and that of Earth is 3.157•107 seconds. What is the value of Mercury’s orbital period in Earth-years?

Query 13:
How many revolutions around the Sun does Mercury complete in one century? How many degrees of angle are swept out in this time?

Query 14: 
In the geometric system, the mass M of the Sun is 1.477•103 meters and the orbital radius ro is 5.80•1010 meters. Use this to calculate the value of the correction factor (3M/ro).

Query 15:
Use the results of Query 13 and 14 to obtain a prediction of the advance of Mercury’s perihelion in a century.

Query 16:
There are 60 arc-minutes per degree and 60 arc-seconds per arc-minute. Use this information to predict the advance of Mercury’s perihelion in terms of arc-seconds per century. A more exhaustive analysis returns a result of 42.98(0.1 arc-seconds per century. Calculate the percent error in the accepted value and the value you calculated


The Jet Propulsion Laboratory in Pasadena, California, has a group of more than 100 interlinked computer programs that use current observational data and the relativistic laws of motion to predict the locations of the planets in the past and the future. The relativistic calculations take into account the gravitational interactions between each planet and the Sun, all interactions between all planets, Earth’s moon and 300 of the most massive asteroids as well as Earth-Moon interactions due to nonsphericity and tidal effects.


These computers were used to calculate the precession of some major planets over a 400 year period. One calculation included all relativistic effects and one calculation ignored relativistic effects.  By taking the difference between these two numbers one is able to isolate the perihelial advances due only to the general relativistic effects. This data is presented below.

Data: Advance of the Planetary Perilehia
	Planet
	Advance of perihelion (arc-seconds per century)
	Orbital Radius (Astronomic Units)
	Orbital Period (Years)

	Mercury
	42.98(0.001
	0.38710
	0.24085

	Venus
	8.618(0.041
	0.72333
	0.61521

	Earth
	3.846(0.012
	1.00000
	1.00000

	Mars
	1.351(0.001
	1.52368
	1.88089


Query 17:
Compare the JPL computed advances of the planetary perihelia with the results of the approximate formula derived in Queries 14-16. Calculate the percent error between the approximate formula and the JPL data for each planet.


Finally, we turn our attention to the question of which time to use in our analysis. Implicitly, we have used the Earth time, since we have calculated the perihelial advance in terms of the Earth year.

Query 18:
Assume a stationary observer placed at ro, and label the time recorded by the stationary observer as the ‘shell time’.  Use the special relativistic effect of time dilation to calculate the fractional difference between Mercury time and ‘shell’ time due to Mercury’s orbital speed of 4.8•104 meters per second. Over a full century, by what fraction would it change the total angle covered, and thus the predicted angle of rotation of the major axis if you were to use Mercury time instead of ‘shell time’?

Query 19:
Using the ideas of general relativity, which relate time differences to potential energy differences, calculate the fractional difference between the ‘shell time’ and the ‘universal time’ used in the Newtonian approach if you were to use ‘shell time’ instead of the ‘universal time’. Over a full century, by what fraction would it change the total angle covered, and thus the predicted angle of rotation of the major axis?

Query 20:
From your answers to Queries 18 and 19, does it appear to matter whether we use planetary time (, tshell or tuniversal in our calculations? What can we conclude from this exercise regarding the apparently bizarre claims of special and general relativity?
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