CROSS PRODUCT AND APPLICATIONS

The direction of a rotating object is defined as the direction of the axis from which the object rotates about.  To get two different senses of rotation or polarities, we use the right hand rule (RHR).

The cross product of two vectors (AxB) produces a third vector(C) that is orthogonal to A and B.  The direction of this cross product or C vector is an axis mutually perpendicular to A and B in a direction demonstrated by rotating A into B around an axis C or applying the RHR.

C =AxB 
If we reverse the direction of rotation, we get

 BxA = -C

The magnitude of C is the product of the two vectors’ magnitudes and the sin of the angle between them.
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 by the RHR
A three dimensional torque vector can be derived from the definition of the torque vector and the cross product.
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The above equation is an expression for the torque about an axis through a pivot point o where r is the position vector from the pivot to where the force contacts the object.  Utilizing the expressions above, we can derive a general three- dimensional expression for this torque.
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Thus,
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We can define an analogous angular momentum about a pivot axis o.

L
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 = r x p
A similar three-dimensional expression for the angular momentum can be derived by substituting 
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 in the torque expression. 
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